

Flow Rate

• Flow rate Q, is defined to be the volume of fluid passing by some location through an area during a period of time.

$$Q = \frac{V}{t}$$

- Flow rate and velocity are related, but quite different, physical quantities.
 - If two rivers have the same width and depth, the slower moving one will have a smaller flow rate.
 - A wide and deep river will have a large flow rate even at slower speeds.
- We can derive an expression for the exact relationship between flow rate and velocity.

· Consider an incompressible fluid flowing along a pipe of decreasing radius. • Because the fluid is incompressible, the same amount of fluid must flow past any point in the tube in a given time to ensure continuity of flow.

OpenStax, Rice University (CC BY 4.0)

• This must be true for any points 1 and 2 along the tube.

 $Q_1 = Q_2$ $\overline{A_1 v_1 = A_2 v_2}$

$$A_1v_1 = A_2v_2$$

• This is called the equation of continuity and is valid for any incompressible fluid.

Example 1

• A nozzle with a radius of 0.250 cm is attached to a garden hose with a radius of 0.900 cm. The flow rate through hose and nozzle is 0.500 L/s. Calculate the speed of the water as it leaves the nozzle.

$$Q = A_{nozzle} v_{nozzle}$$
$$v_{nozzle} = \frac{Q}{A_{nozzle}}$$
$$v_{nozzle} = \frac{(0.5 \text{ L/s})(10^{-3} \text{ m}^3/\text{L})}{\pi (0.25 \times 10^{-2})^2}$$
$$v_{nozzle} = 25.5 \text{ m/s}$$

Example 2

In humans, blood flows from the heart into the aorta, then arteries, and eventually into a myriad of tiny capillaries. The blood returns to the heart via the veins. The radius of the aorta is about 1.2 cm and the blood passes through it at a speed of about 40 cm/s. A typical capillary has a radius of about 4×10^{-4} cm and blood flows through with a speed of about 5×10^{-4} m/s. Estimate the number of capillaries in the human body.

$$A_{1}v_{1} = A_{2}v_{2}$$

$$\pi r_{aorta}^{2}v_{1} = N\pi r_{capillaries}^{2}v_{2}$$

$$N = \frac{r_{aorta}^{2}v_{1}}{r_{capillaries}^{2}v_{2}}$$

$$N = \frac{(1.2 \times 10^{-2})^{2}(0.4)}{(4 \times 10^{-6})^{2}(5 \times 10^{-4})}$$

$$N = 7 \times 10^{9}$$

Bernoulli's Equation

- When a fluid flows into a narrower channel, its speed increases.
- That means its kinetic energy also increases.
- Where does that change in kinetic energy come from?
 - The increased kinetic energy comes from the net work done on the fluid to push it into the channel.
- There is a pressure difference when the channel narrows.
- This pressure difference results in a net force on the fluid.
- The net work done increases the fluid's kinetic energy.
- As a result, the **pressure will drop in a rapidly-moving fluid**, whether or not the fluid is confined to a tube.

 Daniel Bernoulli, Swiss (1700-1782) worked out a principle concerning fluids in motion and developed an equation that expresses this principle quantitatively.

Historisches Museum Basel, Peter Portner (CC BY-SA 4.0)

$$P_1 + \rho g y_1 + \frac{1}{2} \rho v_1^2 = P_2 + \rho g y_2 + \frac{1}{2} \rho v_2^2$$

- ρ fluid density
- v speed of fluid
- g gravitational field strength
- y the height above a chosen level
- P the pressure at the height y
- Bernoulli's equation is an expression of conservation of energy.

Example

 Water circulates through a house in a hot water system. The water enters the house with a speed of 0.50 m/s through a 4.0 cm diameter pipe with a pressure of 3.0x10⁵ Pa. Calculate the pressure in a 1.0 cm diameter pipe on the second floor 5.0 m above. Assume the pipes do not divide into branches.

$$P_1 + \rho g y_1 + \frac{1}{2} \rho v_1^2 = P_2 + \rho g y_2 + \frac{1}{2} \rho v_2^2$$

First, we need to calculate speed of water on the second floor.

$$A_1 v_1 = A_2 v_2$$

 $v_2 = \frac{A_1 v_1}{A_2} = \frac{\pi (0.02)^2 (0.5)}{\pi (0.005)^2} = 8 \text{ m/s}$

Now we can calculate the pressure. $P_1 + \rho g y_1 + \frac{1}{2} \rho v_1^2 = P_2 + \rho g y_2 + \frac{1}{2} \rho v_2^2$ $P_2 = P_1 + (\rho g y_1 - \rho g y_2) + \left(\frac{1}{2} \rho v_1^2 - \frac{1}{2} \rho v_2^2\right)$ $P_2 = (3 \times 10^5) + 1000(9.8)(0 - 5) + \frac{1}{2}(1000)((0.5)^2 - (8)^2)$ $P_2 = 2.2 \times 10^5 \text{ Pa}$

$$P_1 + \rho g y_1 + \frac{1}{2} \rho v_1^2 = P_2 + \rho g y_2 + \frac{1}{2} \rho v_2^2$$

Both P_1 and P_2 are open to the atmosphere and therefore are atmospheric pressure.

$$\rho g y_1 + \frac{1}{2} \rho v_1^2 = \rho g y_2 + \frac{1}{2} \rho v_2^2$$

The fluid is incompressible, so the densities are all the same.

$$gy_1 + \frac{1}{2}v_1^2 = gy_2 + \frac{1}{2}v_2^2$$

Solve for v_2^2 and substitute in for the heights.

$$v_2^2 = v_1^2 + 2g(h_1 - h_2)$$

Replace $h_1 - h_2$ with *h* to represent the height the water drops.

$$v_2^2 = v_1^2 + 2gh$$

This is simply a kinematic equation for any object falling a distance h with negligible resistance. In fluids, this equation is called **Torricelli's theorem**.

Venturi Tube (Meter)

- The fluid speeds up in the narrow part causing a pressure change.
- The pressure differences are used to determine the speed of the fluid.

Baseball

• The rotation of the baseball causes the air to move faster on one side, resulting in a change in pressure.

Transient Ischemic Attack (TIA)

• A blockage in the subclavian artery on one side will cause the velocity of the blood on that side to increase, resulting in a lower pressure at the vertebral artery.

Entrainment

 A fast-moving fluid creates an area of high pressure that forces other fluids into the stream.

Underground Burrows

 Animals that live underground build burrows with at least two different entrances at different heights.

ر Squeeze bulb

Renée Hubregtse-Koks (CC BY-NC 2.0)

• Air that passes over the higher one is faster, creating an area of low pressure that pulls air through the burrow.

Laminar Flow and Viscosity

- Laminar flow is characterized by the smooth flow of the fluid in layers that do not mix.
- Turbulent flow, or turbulence, is characterized by eddies and swirls that mix layers of fluid together.

- Viscosity is fluid friction, both within the fluid itself and between the fluid and its surroundings.
 - Water has a low viscosity and syrup has a high viscosity.
 - Viscosity increases with temperature.

- Flow rate *Q* is in the direction from high to low pressure.
 - The greater the pressure differential between two points, the greater the flow rate.

$$Q = \frac{\Delta P}{R}$$

- The resistance R includes everything, except pressure, that affects flow rate.
 - For example, length of the tube, viscosity, turbulence, and diameter of the tube.

- If viscosity is zero, the fluid is frictionless and the resistance to flow is also zero.
- Comparing frictionless flow in a tube to viscous flow, for a viscous fluid, speed is greatest at midstream because of drag at the boundaries.

• The shape of the flame of a blow torch or a lighter is due to the viscosity of the gas.

Turbulence

- Flow in a very smooth tube or around a smooth, streamlined object will be laminar at low velocity.
- At high velocity, even flow in a smooth tube or around a smooth object will experience turbulence.
- At intermediate velocities, flow may oscillate back and forth indefinitely between laminar and turbulent.

Motion of an Object in a Viscous Fluid

- A moving object in a viscous fluid is equivalent to a stationary object in a flowing fluid stream.
- Flow of the stationary fluid around a moving object may be laminar, turbulent, or a combination of the two.

• One of the consequences of viscosity is a resistance force called viscous drag.

